

Schulinterner Arbeitsplan Chemie 12-13

Bearbeitet durch: Fachgruppe Chemie

12.1: Grundlegende Phänomene chemischer Reaktionen

Thema der Unterrichtseinheit	Fachwissen/Fachbegriffe	Kompetenzbereiche Erkenntnisgewinnung durch Methoden(E) / Kommunikation (K)/Bewertung (B)	Bemerkungen/ Bezüge
Was treibt chemische Reaktionen an?	 Definition des Begriffes Energie Energieumwandlung/Energieerhaltung (1. Hauptsatz der Thermodynamik) Systembegriff Wirkungsgrad Unterscheidung Enthalpie/innere Energie Enthalpiediagramme Aktivierungsenergie Standardbildungsenthalpien/Reaktionsenthalpie Entropie Gibbs-Helmholtz-Gleichung 	 ▶ Herstellen von Bezügen zur Lebenswelt der Schüler (K) ▶ Energiebegriff in Alltags- und Fachsprache (K/B) ▶ Durchführung von Experimenten nach Anleitung: Kalorimetrische Bestimmung von Reaktionsenthalpien(E) ▶ Fehleranalyse/Vergleich mit Literaturdaten (E/K/B) ▶ Beurteilung der Energieeffizienz (B) ▶ Aufstellung und Interpretation von Enthalpiediagrammen (K) ▶ Theorie des Übergangszustands (E) ▶ Darstellen der Katalysatorwirkung im Energiediagramm (E/K) ▶ Arbeit mit Tabellenwerken (E) ▶ Berechnungen mit der Gibbs- Helmholtz-Gleichung (E) 	□innere Energie eines Stoffes als Summe aus Kernenergie, chemi- scher Energie und thermischer Energie □Messen des Brenn- werts von Lebens- mitteln □Entropie als thermo- dynamische Wahrscheinlichkeit □Gedankenexperiment zur Gibbs-Helmholtz- Gleichung □Energieentwertung als Zunahme der Entropie

Geschwindigkeit chemischer Reaktionen	 Definition der Geschwindigkeit: v=Δc/Δt Momentangeschwindigkeit/Durchschnittsgeschwindigkeit Abhängigkeit der Reaktionsgeschwindigkeit von Temperatur, Druck, Konzentration und Zerteilungsgrad Geschwingkeitsgleichung Geschwindigkeitskonstante Stoßtheorie RGT-Regel/Bezug zur Stoßtheorie 	 ▶ Geschwindigkeitsbegriff im Alltag (K/B) ▶ Planen geeigneter Versuche zur Messung der Reaktionsgeschwindigkeit (E/K) ▶ Durchführung von Versuchen zur Messung von v (E)) ▶ Bestimmung von v über c/t-Diagramme (E) ▶ Bestimmung von Momentan- und Durchschnittsgeschwindigkeit über Steigung von Tangente/Sekante (E) 	□phänomenologischer Einstieg:unterschiedlich schnelle Reaktionen im Alltag
Chemische Reaktionen im Gleichgewicht	 Umkehrbarkeit von Reaktionen dynamisches Gleichgewicht Verschiebung des Gleichgewichts durch Temperatur, Druck, Konzentration Prinzip von LeChatelier Wirkungsweise von Katalysatoren Gleichgewichtskonstante und Massenwirkungsgesetz qualitativer Zusammenhang K/Gleichgewichtslage 	 ▶ Durchführung von Experimenten zur Umkehrbarkeit von chemischen Reaktionen (E) ▶ Modellexperimente und deren Übertragbarkeit (K/B) ▶ Recherche zu Katalysatoren in technischen Prozessen/Präsentation der Ergebnisse (E/K) ▶ Beurteilung der Steuerung chemischer Prozesse (B) ▶ Gleichgewichtsreaktionen in Natur und Technik (K) ▶ fachsprachliche Umsetzung von Flussdiagrammen techn. Prozesse (K) ▶ mathematische Formulierung des MWG, Berechnungen zum MWG, mathematische. Beschreibung von Gleichgewichtsbeeinflussung (E) 	□Veranschaulichung z.B. durch Bildgeschichte "Holzapfelkrieg" □Stechheberversuch □NO₂/N₂O₄-Gleichge- wicht □Abgaskatalysator □Haber-Bosch- Verfahren □Kesselstein: HCO₃⁻ /CO₃²⁻ -Gleichgewicht □Höhenkrankheit □Estergleichgewicht , experimentelle Ermittlung von Kc

12.2: Donator-Akzeptor-Reaktionen

Thema der	Fachwissen/Fachbegriffe	Kompetenzbereiche	Bemerkungen/Bezüge
Unterrichtseinheit	_	Erkenntnisgewinnung durch Methoden(E)/	
		Kommunikation (K)/Bewertung (B)	
Elektrochemie in	 Redoxreaktionen als 	► Entwicklung des Redoxbegriffes	□Herstellung von
Alltag und Technik	Elektronenübertragungsreaktion	(K/B)	Bezügen zum Alltag
	 Redoxpaare 	► Planung und Durchführung von	
	Oxidationszahlen und deren	Versuchen zur Redoxreihe der Metalle	□Heraustellung des
	Veränderung bei Redoxreaktionen	(E)	Donator-Akzeptor-
	●Aufbau und Funktion galvanischer Zellen	► Aufstellen von Redoxgleichungen	Prinzips
	elektrochemische Spannungsreihe	über Teilgleichungen (E)	□Anwendungsbeispiel
	●Zelldiagramm	► Skizzierung galvanischer Zellen (E)	Abwasserreinigung
	Standardpotential	► Erklärung der elektrochemischen	□elektrochemische
	Standard-Wasserstoffhalbzelle	Doppelschicht (K)	Doppelschicht als
	◆Elektrolyse als Umkehrung der	► Messen von Zellspannungen	Redoxgleichgewicht
	galvanischen Zelle	galvanischer Zellen (E)	□Einsatz von
	•Zersetzungsspannung/Abscheidungs- potential	► Bedeutung der Standardisierung erkennen (B)	Simulationsprogrammen
	•technische Elektrolysen (Chloralkali-	► Arbeiten mit Tabellenwerken (E)	
	Elektrolyse oder Aluminiumgewinnung)	► Anwenden von Standardpotentialen	
	●elektrochemische Energieträger (Bau	zu Vorhersage von Reaktionsverlauf	
	und Funktion von Batterien,	(E)	
	Akkumulatoren und Brennstoffzellen)	► Berechnung der Zellspannung eines galvanischen Elementes (E)	
		► Durchführung von Experimenten zur	
		Umkehrbarkeit von galvanischen	
		Zellen (E)	
		► Vergleich Elektrolyse/galvanische	□Vergleich Polung und
		Zelle (K)	Stromflussrichtung bei
		► Skizzierung einer Elektrolysezelle	Elektrolysen und galva-
		(E)	nischen Zellen

		 ▶ Recherche und Präsentation zur technischen Anwendung von Elektrolysen (K) ▶ Bewertung von Elektrolysesystemen in Alltag und Technik (B) ▶ Recherche und Präsentation von elektrochemischen Energiequellen (K) ▶ Bewertung der elektrochemischen Energiequellen (Vor-/Nachteile, Einsetzbarkeit, ökologische Verträglichkeit, etc.) (B) 	□z.B. Freiarbeit zu elek- trochemischen Energiequellen
	Konzentrationsabhängigkeit des Elektrodenpotentials (Nernstsche Glei- chung)	 ▶ Potentialberechnungen für Metall- Halbzellen (E) ▶ Darstellung und Auswertung von Diagrammen zur Konzentrations- abhängigkeit des Elektroden- potentials (K) 	□Versuche zu Konzentrationszellen
Protolysereaktio- nen in Alltag und Technik		 ▶ Reflexion der Entwicklung des Säure-Base-Begriffes (K/B) ▶ Recherche zu Säuren und Basen im Alltag, Technik, Umwelt (K) ▶ Beurteilung der Verwendung von Säuren und Basen im Alltag und Technik (B) ▶ Konzentrationsberechnungen mithilfe des Ionenprodukt des Wassers (E) ▶ Recherche zu pH-Wert-Angaben im Alltag mit Abschätzung des Gefahrenpotentials von wässrigen Lösungen (K/B) ▶ Messen von pH-Werten(E) 	□Säuren als Konservierungsstoffe □mathematische Kenntnisse zum Logarithmus eventuell nicht vorhanden

●Stärke von Säuren und Basen: pK _S und pK _B -Werte	► Formulierung von Protolysegleichgewichten (E)	
•Zusammenhang zwischen pK _S - und pK _B - Werten	 Experimentelle Bestimmung des pK_S-Wertes einer einprotonigen Säure aus dem pH-Wert (E) Experimentelle Bestimmung des pK_S-Werten zur 	
●Differenzierung von starken und schwachen Säuren mithilfe der pK _S - und pK _B -Werte	Vorhersage von S/B-Reaktionen (E/K) ▶ Berechnung der pH-Werte starker und schwacher einprotoniger Säuren ▶ Arbeit mit Tabellenwerken zur Auswahl geeigneter Indikatoren (E)	□exakte Berechnung durch Lösen von quadratischer Gleichung
 Neutralisationsreaktion als Protolyse Säure-Base-Titration Säure-Base-Indikatoren 	 Durchführung von Titrationen mit Auswertung ((E) Aufnahme von Titrationskurven für einprotonige Säuren und qualitative Erklärung des Kurvenverlaufs (E) Bedeutung der Maßanalyse (B) Versuche zum Nachweis der Pufferwirkung (E) 	nicht gefordert □Durchführung verschiedener Titrationsverfahren (potentiometrisch, konduktometrisch)
 Puffersysteme 	► Recherche zu Puffersystemen in Umwelt u. biologischen Systemen (K)	□Herstellen einer Puffer- lösung □Blutpuffer □Bestimmung der Säuren- und Basenkapazität verschie-
 Säure-Base-Indikatoren als schwache Brönsted-Säuren bzw. – Basen Interpretation von Puffersystemen als Säure-Base-Gleichgewichte 	Halbäquivalenzpunkt, Anfangs-pH- Wert (E) ▶ zu Puffersystemen: Formulierung von Protolysegleichgewichten(K); Anwendung der Henderson- Hasselbalch-Gleichung (E)	dener Trinkwässer

13.1: Vom Rohstoff zum Syntheseprodukt

Thema der	Fachwissen/Fachbegriffe	Kompetenzbereiche	Bemerkungen/Bezüge
Unterrichtseinheit		Erkenntnisgewinnung durch Methoden(E)/	
		Kommunikation (K)/Bewertung (B)	
Erdöl – zum Ver-	 ■Zusammensetzung von Erdöl und 	► Beschreibung der Aufbereitung von	□Filmanalyse
brennen zu schade	Erdgas	Erdöl durch fraktionierte Destillation	
	 Unterscheidung anorganischer und or- 	(Erläuterung schematischer Dar-	
	ganischer Stoffe	stellungen technischer Prozesse)	
		(E/K)	
		► Benennung von organischen	
		Verbindungen (E/K)	
		►Zuordnung von Stoffen zu	
		Stoffgruppen (Metalle, Nichtmetalle,	
		Ionen-/Molekülverbindungen; Nutzung	
	Prinzip der Gaschromatographie	geeigneter Formelschreibweisen (E/K)	
	●Klimawandel und Treibhauseffekt	► Nutzung der Gaschromatographie	
		zur Trennung von Gemischen (E)	
Vom Alkan zum	●Alkane, Alkene	►Erstellen homologer Reihen (E)	□keine Differenzierung
Aromastoff –	●EPA-Modell	► Anwenden der IUPAC-Nomenklatur	zwischnen σ- und
Vielfalt	Konstitutionsisomerie/cis-trans-Isomerie	(E)	П-Bindungen, da das
organischer	●Einfach-/Mehrfachbindungen	► Nutzung geeigneter Modelle zur	Orbitalmodell, das VB-
Reaktionen	●Zusammenhang zwischen Stoffeigen-	Moleküldarstellung (E)	Modell sowie das MO-
	schaften und Molekülstruktur sowie	► Diskussion über Grenzen von	Modell nicht Inhalt des KC
	Polarität von Bindungen	Modellen (K)	sind
		► Bedeutung der eindeutigen	
		Nomenklatur (B)	
		► Planung von Experimenten zur Un-	
		tersuchung von Stoffeigenschaften (E)	

- •Mechanismus der radikalischen Substitution
- Mehrfachsubstitution
- $\bullet Ozon problematik$

- Mechanismus der elektrophilen Addition
- Induktionseffekte
- •Nachweis von Doppelbindungen durch Brom
- Eliminierung (nur als Reaktionstyp)

 Molekülstruktur und funktionelle Gruppen von organischen Sauerstoffverbindungen (Alkanole, Alkanale, Alkanone, Ether, Carbonsäuren, Ester)

- ► Anwendung der Fachsprache zur Erklärung von Struktur/Eigenschaftsbeziehungen auf Siedetemperaturen und Löslichkeit (E/K)
- ► Experimente zur S_R-Reaktion (E)
- ► Versprachlichung des Mechanismus (K)
- ► Analyse von Texten und Darstellung von Reaktionsmechanismen aus Texten (K)
- ► Anwendung der IUPAC-Nomenklatur auf Halogenalkane (E)
- ► Aufstellen und Interpretation eines Enthalpiediagrammes zur radikalischen Substitution (E)
- ► Experimente zur AE-Reaktion (E)
- ► Versprachlichung des Mechanismus (K)
- ► Durchführung von Nachweisreaktionen (E)
- ► Diskussion über die Bedeutung von Nachweisen (K)
- ► Vorhersage der entstehenden Produkte in Abhängigkeit von den Reaktionsbedingungen (K)
- ► Erstellen homologer Reihen (E)
- ► Anwenden der IUPAC-Nomenklatur (E)
- ► Nutzung von Modellen zur Moleküldarstellung (E)
- ► Diskussion über Grenzen von Modellen (K)

□aus Vergleich von Addition und Substitution ableiten der Begriffe Radikal, Elektrophil, Homolyse, Heterolyse

		 ▶ Bedeutung der eindeutigen Nomenklatur (B) ▶ Planung von Experimenten zur Untersuchung v. Stoffeigenschaften (E) ▶ Anwendung der Fachsprache zur Erklärung von Struktur- Eigenschaftsbeziehungen auf Siedetemperaturen und Löslichkeit (E/K) ▶ Bedeutung funktioneller Gruppen (E) ▶ Beschreiben von Redoxreaktionen bei organischen Molekülen (E) 	
	 ◆Regel von Markownikow (Addition asymmetrischer Verbindungen) ◆mesomere Effekte zur Erklärung der Säurestärke organischer Säuren 		
Aromaten – von Sonnencremes und TNT		 ▶ Anwendung des Mesomeriemodells zur Erklärung des aromatischen Zustands (E) ▶ Diskussion über Grenzen von Modellen (K) ▶ Darstellung des Synthesewegs einer organischen Verbindung 	□historische Betrachtung der Leistung von Kekule □Wh. des Donator- Akzeptor-Prinzips durch Protolysereaktionen von Phenol und Anilin bzw. Redoxreaktionen der Diphenole □Verknüpfung von Aromaten und Kunststoffen z.B. am Beispiel von Epoxidharzen

13.2: Organische Makromoleküle

Thema der Unterrichtseinheit	Fachwissen/Fachbegriffe	Kompetenzbereiche Erkenntnisgewinnung durch Methoden (E) / Kommunikation (K)/Bewertung (B)	Bemerkungen/Bezüge
Kunststoffe im Alltag	 Einteilung der Kunststoffe in Duroplaste, Thermoplase und Elastomere Recycling von Kunststoffen (thermisch, rohstofflich, werkstofflich) Polykondensation radikalische Polymerisation Unterscheidung reaktiver Teilchen 	 ▶ experimentelle Untersuchung von Kunststoffen (E) ▶ Recherche zu Anwendungsbereichen von Kunststoffen/Vergleich mit anderen Werkstoffen/Vorteile-Nachteile (K) ▶ Beurteilung der Bedeutung von Kunststoffen im Alltag (B) ▶ Beurteilung des Kunststoffrecyclings unter Einbeziehung des Dreiecks zur Nachhaltigkeit (B) ▶ Versuch zur Polykondensation (E) ▶ Darstellung der Struktur-Eigenschaftsbeziehungen bei Makromolekülen (E) ▶ Nutzung geeigneter Modelle zur Veranschaulichung von Reaktionsmechanismen (E) ▶ Darstellung des Synthesewegs einer organischen Verbindung(K) 	□Zusammenhang zwischen Verarbeitung und Kunststoffart
Bausteine des	Klassifizierung von Proteinen,	► Versuche zur Untersuchung	z.B. Projekt:
Lebens	Kohlenhydraten, Fetten	ausgewählter Naturstoffe (E)	Zuckergewinnung oder
	Nachweisreaktionen: Fehling-Probe,	► Versuche zu Nachweisen	Isolierung und
ı	Jod-Stärke-Reaktion	funktioneller Gruppen (E)	Charakterisierung von

 Molekülstruktur der Aminosäuren 	►fachsprachliche Darstellung der	Fetten (Jodzahl,
	Zusammenhangs zwischen Struktur	Verseifungszahl)
	und Eigenschaft (K)	